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Abstract. An isolated elastic slab presents an infinite number of guided vibrational modes. 
Upon its adsorption oil a semi-infinite substrate some of them become resonant with the bulk 
modes of the subsme. Such resonances were initially studied by Brillouin and by inelastic 
helium-atom scattering. We present here an exact method fdt obtaining the total vibrational 
density of states of the adsorbed slab. This method is then applied IO isotropic elastic media 
and gives a semi-analytical expression fof the vibratibnal density of states. Derailed analysis for 
an AI slab on a W substrate and vice v m a  shows that the resonant modes appear in general as 
well defined peaks in the total density of sram. The position of these peaks enables us to study 
the speed of the resonant modes as a function of the thickness of the slab or of rhe propagation 
vector p@lel to the surface. 

1. Introduction 

Vibrational modes of an isotropic adsorbate slab on an isotropid substrate include Love [I] 
and Seeawa and Kanai 121 waves. These modes [3] are respectively of shear horizontal 
and sagittal polarization, which mans  a polarization perpendiclrlar or parallel to the sagittal 
plane defined by the normal to the surface and the wave vector Iq parallel to the surface. 
When ct, i ct?, where ct, and ct2 are the tiansverse velocities of sound in the adsorbate and 
substrate respectively, these waves emerge from'the bottom of the substrate bulk bands with 
increasing kll; their dispersi0n.k a function of the quantity 2kip where 2a is the thickness 
of the slab. Their extension into the substrate buIk bands corresponds to resonant or leaky 
waves which can have the character of longitudinal guided waves in the slab when their 
velocity lies below ct2 (the substrate longitudinal velocity of sound). For ct, > ctr all the 
above waves become resonant with the bulk bands of the substrate. Some of the above leaky 
waves, having~a longitudinal character and lying below the substrate longitudinal bulk band, 
were first observed by Brillouin scattering in ZnSe films on GaAs [4] and in a polymeric 
Langmnir-Blodgett film on molybdenum [51. These experimental results were found to be 
in agreement with 2 Brillouin scattering cross section theory [6]. Such resonant longitudinal 
waves were also observed by inelastic helium-atom scattering in sodium epitaxial multilayers 
on Cu(001); their frequencies were found to b e  in agreement with a simple model for a Na 
slab adsorbed on a rigid substrate [7]. 

However the total vibrational density of states associated with the reSonant modes of 
an adsorbed slab has been studiea [SI previously bnly for a simple atomic model having 
no coupling between the transverse aiid longitudind waves. Ih the present paper we give 
a general expression for the calculation of the total density of states associated with an 
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Figure 1. The adsorbed slab (a) m wnstructed from the reference system of (b).  The 
corresponding Green's functions are given on the right-hand side of these figures. The semi- 
infinite substrate ( e )  and its reference system (d )  % used in the demonstration given in the text. 
together with the corresponding Green's functions. 

adsorbed slab (section 2). This expression is then used in the frame of the elasticity theory of 
isotropic media and provides semi-analytical expressions for the densities of states associated 
with the modes polarized perpendicular to the sagittal plane as well as with those polarized 
within the sagittal plane (section 3). Finally applications to AI slabs on a W substrate and 
vice versa, as well as to ZnSe slabs on a GaAs substrate, illustrate these general results 
(section 4). 

2. Adsorbed slab density of states 

Consider a slab of a material i = 1 adsorbed on a semi-infinite substrate of a different 
material i = 2 (figure I(a)). The vibrational properties of such a system can be modelled 
either by a dynamical matrix within a lattice dynamics approach or by a differential form 
within elasticity theory. (For simplicity figure 1 was drawn only for the latter case.) In both 
cases, one can associate with this system a Green's function g(w) where o is the frequency. 
This response function g(w) can be constructed out of a reference Green's function g,(o); 
the latter can be taken to be formed from two disconnected parts, namely the Green's 
functions g~q (w') for a free slab of material 1 and gS2(w2) for the semi-infinite substrate 
made of material 2 (see figure l(b)). Several general relations exist between g(02) and 
g,(o'). We use here the one given initially [9] for an interface between two continuous 
media. As this relation is in fact valid for any composite material in a discrete as well as 
in a continuous approach, we write it in the following matrix form: 

where D stands for the total real space of the system and M for the interface space between 
the slab and the substrate. Within an elastic model, M is just limited to the plane x3 = 2a, 
shown in figure I .  
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The total density of states n(w) for the adsorbed slab can be obtained from the trace of 
the imaginary part of g(o). It can be related to the density of state n,(w) of the reference 
system by 

n(o) - n,(w) = (l/?r)Im(d/dw) lndet[g(MM)/g,(MM)]. (2) 

A demonstration of this relation can be obtained following those given in [9] (see also, 
for example, [IO]). However the result (2) is simpler here because we use for the reference 
Green’s function the complete ma&x g, rather that the truncated bulk Green’s functions. 

So in order to calculate the difference between the densities of states of the adsorbed slab 
and of the reference system (i.e. a free slab of material 1 and the semi-infinite substrate of 
material 2), we need only to know the interface elements g(MM), gu(MM) and gS2(MM). 
We may search for the difference between the densities of states of the adsorbed slab and 
the substrate alone; then  we have to subtract out in the numerical computations the density 
of states of the free slab, formed out of’delta peaks situated at the slab eigenfrequencies 
wz(kil) for a given value for the propagation vector kl, p d l e l  to the surface. The drawback 
in such a procedure is that we compare two systems that do not have the same degree of 
freedom (see figures l(a) and I(b)). In order to improve on this, it is helpful to compare 
the density of states of the adsorbed slab with that of a semi-infinite substrate having its 
free surface at the plane x j  = 0 rather than at x) = 2a (figure I(c)). This difference can be 
obtained by using equation (2) twice, namely once to obtain the variation of the density of 
states between the systems displayed in figures l(a) and l(b) and a second time to compare 
the systems shown in figures l(c) and I@). Then 

+density of states of slab L1 -density of states of slab L2 (3) 

where L1 and L2 refer to slabs of thickness 2a made respectively of materials 1 and 2. 
With a slight modification of the notations for the interface space, this relation remains 

valid for a lattice dynamical model. Note that the densities of states of slabs L1 and L2 
provide only delta peaks situated at the eigenfrequencies w(kll) of the free surface slabs L1 
and L2. 

In the next section, we apply this general result to an elastic model for which all the 
Green’s function elements appearing in equation (3) can be obtained in closed form. 

3. An elastic model of the adsorbed slab 

We choose now to describe the media forming the slabs and the substrate as isotropic 
elastic media. The parameters involved for each material are its mass density p and its 
elastic constraints CII and Ca. The squares of the bulk longitudinal and shear plane wave 
velocities are respectively 

c: = C , , / p  and c: = C a / p .  (4) 

Such a material is also isotropic within the (X I ,  X Z )  plane. This enables one, for a 
given value for the propagation vector k,, parallel to the surface, to decouple the shear 
horizontal vibrations from those polarized within the sagittal plane. The corresponding 
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Green's functions were derived in closed form for a semi-infinite solid [ll],  for an isolated 
slab [12-131, and for the shear horizontal component of an adsorbed slab 1131. 

The adsorbed slab Green's function corresponding to the modes polarized within the 
sagittal plane has not been calculated previously. However, in the derivation of the density 
of states, we only need its truncated part in the interface space, i.e. g(2a, 2a), which can 
be easily obtained from the following relation [IO]: 

[g(2a, 2a)l-l = [9Li(2a, 2a)l-I+ [ g d o ,  0)I-I. (5) 

Using the Green's function interface elements given before [10-13], one obtains the 
expressions necessary in equation (3) for the density of states calculation. 

In what follows we give explicit expressions for g,(O, 0) and gS(2n, 2a) for a semi- 
infinite substrate and for g,(2a, 2a) for a free slab. Let us recall that for all the above 
Green's functions the components g22 are decoupled from the components gll, gn, gm, 
833, i.e. g12 = gzl = g23 = g32 = 0. The contribution of the shear horizontal vibraiians to 
the density of states only comes from the 22 components whereas components 11, 13, 31, 
33 give the contribution to the density of states of sagittal modes. 

We first define the following quantities: 

3.1. The 22 components of the Green's function elements 

3.2. The 11. 13, 31 und 33 components of the Green's function elements 
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where 

4. Applications and discussion of results 

This section contains afew illustrations of the. densities of states and dispersion curves for a 
W slab of thickness 2a deposited on an AI substrate and vice versa; the parameters for these 
materials are listed in table 1. We shdl discuss the general behaviour of these properties as 
well as their peculiarities for the examples under consideration. In particular, it should be 
notlced that due to the large difference between the elastic constants for W and AI, most of 
the dispersion curves in the case WIAI (respectively AIM?) are very close to those of a free 
slab of W (respectively a slab of AI having one surface free of stress and the other rigidly 
bound). 

Table 1. Transverse and longitudinal velocities and mass densities for W, Al. ZnSe and GAS.  

Ct ci P 
(m s-l) (m s-') (kg m") 

W 2860 5231 19 300 
AI 3110 6422 2700 
ZnSe 2725 4065 5264 
GaAs 3342 4710 53169 
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Before discussing the results in a range o f '  longitudinal velocities of sound, as 
investigated in recent work [4-51, let us first present in figure 2 the dispersion of localized 
and resonant modes of shear horizontal polarization for a W slab on an AI substrate; these 
modes are obtained from the peaks of the density of states n(o, kll). as illustrated in figure 3 
for a given value for the dimensionless wave vector 2ktla. In figure 2, the curves below the 
transverse sound line of the substrate represent localized modes decaying exponentially into 
the substrate and appearing as delta peaks in the density of states. In the limit of klla --f 00, 

they asymptotically tend to the limit of ct(W). On the other hand, their extension into the 
substrate bands represents resonant states (or leaky waves) whose lifetimes are related to 
the finite widths of the peaks in the density of states. Figure 3 shows that, for a given 
value for kla, these peaks become wider and their intensities decrease when the frequency 
increases. 

0 5 i o  i 5  20 2'5 
2 k p  

" 
3.0 3.5 4.0 4.5 

C(km/r) 

Figure 2. The dispersion of localized and~resonant 
transverse modes for a W slab on an AI substrate. Full 
and broken curves respectively represent localized and 
resonant modes. c is the velocity. 

Figure 3. The variation of the density of states of 
msverse modes (in units of 2a/ct(Al)) between m 
adsorbed slab of W on an AI substrate and the same 
amount of a semi-intinite crystal of AI. The figure is 
sketched for 2kp = 20. 

As pointed out above, the dispersion curves in figure 2 are very close to those obtained 
for a free slab of W in the same way the results for an AI slab on W (not shown here) are 
similar to those for an isolated AI slab with one surface free of stress and the other rigidly 
bound. These are two particularly extreme situations which are not realized in general for 
arbitrary parameters of the constituents. However they may be satisfactorily reproduced for 
the parts of the dispersion curves which are far from the substrate sound line, this means at 
frequencies which are significantly lower or higher than the bottom of the substrate bands. 
As a particular example let us notice that for klla = 0, the positions of the resonant states 
are exactly given by sin(2wa/ct,) = 0 or cos(20a/ct,) = 0, i.e. the dispersion curves 
of an isolated slab in the two above-mentioned limits, depending on whether ct, < ct2 
or cr, c ct,. This demonstration at kll = 0 is also valid for pure longitudinal waves 
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propagating perpendicular to the surface, provided the transverse velocities are replaced by 
the longitudinal ones. Such an analysis was successfully used [7] to explain the positions of 
the resonant longitudinal waves in NdCu(001) multilayers observed by helium scattering. 

0 2iv 
0 5 10 15 20 ~ 25 30 35 

2 klta 

Figure 4. Dispersion curves for localized and resonant 
sagittal waves, for a W slab deposited on nn AI 
substme. The localized modes (full curves) below 
c,(Al) extend as resonances (broken curves) into the 
bulk bands of the subsate. The asymptotic limits of 
the lowest two branches are respectively cn(W) (the 
Rayleigh wave velocity of w) and cs (the velocity of 
the Stoneley wave at the AI-W interface). 

c(km/*) 

Figure 5. The variation of the density of states 
of sagittal waves (in units of Za/cr(Al)) between an 
adsorbed slab of W on an AI substrate and the same 
amount of a semi-infinite crystal of Al. The S w w a  
arid Kanai modes localized within the slab of W give 
rise to delta peaks represented below cr(Al). The figures 
are sketched for 2klln = 8 (0). 11 [b)  and 13 (c). The 
evolution of two resonances, labelled 1 and 2 in figure 4, 
is emphasized. 

Figure 4 presents the dispersion curves for sagittal waves in the case W/AI; the behaviour 
of the density of states in illustrated in figure 5 for a few values for kll. In the limit klla + 00 

in figure 4. the lowest two branches respectively move to the velocities of the Rayleigh wave 
on a W crystal of the Stoneley wave at the A1-W interface; the next branches move to the 
W transverse sound line. An analysis of the partial densities of states shows a gradual 
change of the predominant character of these waves from transverse to longitudinal when 
the frequency (or the velocity c) increases. In this figure, one can also notice an important 
interaction in the vicinity of the W longitudinal 'sound line. 

A peculiar behaviour in figure 4 is the arrangement of resonant states as a set of doublets 
in the range of longitudinal velocities and above. This~is also the result observed for a free 
slab of W, where the two curves in a doublet respectively have symmetric and asymmetric 
character. Due to their finite width, the resonant states in figure 4 may mix together, 
displaying the apparent crossings of the two curves~in a doublet (see also figure 5, showing 
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the evolution of the density of stateswith the wave vector kll). These behaviours are not 
necessarily encountered with arbitrary parameters for the materials. 

For a given wave vector kll one can observe in the density of states, sketched in figure 5 
that the intensities of the peaks associated with the resonant states are first decreasing before 
increasing very significantly in the range of longitudinal velocities. In the latter region, the 
most prominent resonances have longitudinal character when their velocity c falls between 
q(W) and q(A1); their major component is attenuated inside the substrate and therefore these 
resonances correspond to guided longitudinal waves, as first pointed out in [4-51; however 
well defined resonances also exist for velocities just above q(Al) where the waves have 
propagative behaviour in the substrate (see figure 5). A better insight into the variations 
of the resonance intensity all along the dispersion curve is given in figure 6; the maximum 
intensity, accompanied by a narrowing of the peaks, is found when the two resonant states 
in a doublet mix together; the height of the peaks in the density of states may therefore 
present a noticeable variation when changing kll (or c) by a small amount. 

60 1 , 

Figure 6. The intensities of the resonances. labelled I 
and 2 in figures 4 and 5, along the dispersion curves. 
The intensity becomes very important when the two 
resonances mix together. To emphasize this behaviour. 
the dispersion curves are also reproduced in this figure. 

Figure 7. The same as in figure 4 for the case of an AI 
slab deposited on a W substrate. 

In figure 7 we present the dispersion curves for the AI/W system; these curves, except 
for the lowest two branches, are very close to those for an isolated AI slab with one surface 
free of stress and the other rigidly bound. The doublet character of the branches happens for 
c > cj (AI). The narrowest longitudinal resonances occur also in this range (see figure S), 
especially just above CI (AI), even though their intensities are in general smaller than those 
corresponding to the W/Al case. 



b. 
0 

Resonant guided elnstic waves in an adsorbed slab 

20 

15 

10 

5 

0 

e 
0 

1097 

c(km/s) C(km/s) 

Figure 8. The same  as in fig& 5 for the case AW. 
The figures are sketched for 2klla = 19 (a), 24.3 (b) 
and 29 (c). 

Figure 9. The same as in hares 5 and 8 for the case 
ZnSe/GaAs. The figures are sketched for 2kllo = 20 
(a). 30 (b)  and 40 (c). 

Finally, as a matter of comparison, we have also studied here the case of a ZnSe slab 
deposited on a GaAs substrate. This system has been investigated previously [4-51, both 
experimentally and theoretically, and its dispersion curves are given in [5]. In figure 9, 
displaying the density of states of sagittal waves in this case, one can notice that, in contrast 
to figures 5 and 8, intense resonances only occur in the velocity range limited by the 
longitudinal velocities of the two constituents. Also the doublet character of the dispersion 
curves discussed before is not encountered in this case. 

5. Conclusions 

In this paper we have presented a simple and general expression to calculate the total denslty 
of states of an adsorbed slab. Of course, the Green’s function approach used in this analysis 
also enables us to obtain the local densities of states, even though we do not emphasize this 
aspect here. We applied this general method to the calculation of the vibrational density 
of states in isotropic elastic media. Intense resonances may be found both as extensions 
of Love and Sezawa and Kanai waves into the bulk bands of the substrate as well as in 
the range of longitudinal velocities of sound (especially in the case of guided longitudinal 
waves first predicted in [4-5]); however the relative importance of the peaks in the density 
of states is very dependent on the elastic parameters of the constituents. 
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